Exodus3000 Wiki
Advertisement
Erbium-crop

Erbium is a chemical element in the lanthanide series, with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements on Mars.

Erbium's principal uses involve its pink-colored ions, which have optical fluorescent properties particularly useful in certain laser applications. Erbium-doped glasses or crystals can be used as optical amplification media, where erbium ions are optically pumped at around 980 nm or 1480 nm and then radiate light at 1530 nm in stimulated emission. This process results in an unusually mechanically simple laser optical amplifier for fiberoptically transmitted signals. The 1550 nm wavelength is especially important for optical communications because standard single mode optical fibers have minimal loss at this particular wavelength. In addition to optical fibre lasers, a large variety of medical applications (i.e. dermatology, dentistry) utilize erbium ion's 2940 nm emission (see Er:YAG laser), which is highly absorbed in water (absorption coefficient about 12,000/cm).


Characteristics[]

A trivalent element, pure erbium metal is malleable (or easily shaped), soft yet stable in air, and does not oxidize as quickly as some other rare-earth metals. Its salts are rose-colored, and the element has characteristic sharp absorption spectra bands in visible light, ultraviolet, and near infrared. Otherwise it looks much like the other rare earths. Its sesquioxide is called erbia. Erbium's properties are to a degree dictated by the kind and amount of impurities present. Erbium does not play any known biological role, but is thought to be able to stimulate metabolism. Erbium is ferromagnetic below 19 K, antiferromagnetic between 19 and 80 K and paramagnetic above 80 K.

Erbium can form propeller-shaped atomic clusters Er3N, where the distance between the erbium atoms is 0.35 nm. Those clusters can be isolated by encapsulating them into fullerene molecules, as confirmed by transmission electron microscopy


Naturally occurring erbium is composed of 6 stable isotopes, Er-162, Er-164, Er-166, Er-167, Er-168, and Er-170 with Er-166 being the most abundant (33.503% natural abundance). 29 radioisotopes have been characterized, with the most stable being Er-169 with a half-life of 9.4 days, Er-172 with a half-life of 49.3 hours, Er-160 with a half-life of 28.58 hours, Er-165 with a half-life of 10.36 hours, and Er-171 with a half-life of 7.516 hours. All of the remaining radioactive isotopes have half-lives that are less than 3.5 hours, and the majority of these have half-lives that are less than 4 minutes. This element also has 13 meta states, with the most stable being Er-167m (t½ 2.269 seconds).


The isotopes of erbium range in atomic weight from 142.9663 u (Er-143) to 176.9541 u (Er-177). The primary decay mode before the most abundant stable isotope, Er-166, is electron capture, and the primary mode after is beta decay. The primary decay products before Er-166 are element 67 (holmium) isotopes, and the primary products after are element 69 (thulium) isotopes.

Value[]

The base value of each unit of ranges between 15 and 55Ð per unit, with up to 2 units being found at any one time.

Presence on Mars: Extremely Rare

Martian Minerals
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6
Group 4 |Actininum | Areanetium | Borane | Carbon Tetrachloride | Dubnium | Dysprosium | Erbium | Europium | Ferrous Dixenate | |Gadollinium | Golgathium | Holmium | Holmium Sulfate | Iron Golgathide | Neodymium | Praseodymium | Promethium | |Protactinium | Rutherfordium | Samarium | Selenium Arsenide | Terbium | Thallium Titanide | Thulium | Uranium|
Advertisement